PDF uncertainties for W mass measurements at the Tevatron

Chris Hays & Jack Sennett Oxford University

Snowmass QCD & Electroweak Session April 4, 2013

Overview

Procedure

• m_w uncertainties

• Constraints from measuring $\sigma(1<|\eta|<2)/\sigma(|\eta|<1)$

Conclusions

Procedure

- Run 35 million Powheg NLO+NLL QCD events
 - Use reweighting scheme for multiple PDFs
 - MSTW2008 68% & 90%, CT10, NNPDFs ($\alpha_s = 0.118 \& 0.120$)
- Apply lepton and recoil smearing based on CDF resolutions
 - Electron
 - $\sigma(E_T)/E_T = \sqrt{(0.126^2/E_T + 0.013^2)}$
 - Recoil
 - $\sigma(u) = 0.8 \sqrt{u}$
 - $u_{meas} = 0.65 u_{true}$
 - recoil angle: flat distribution with width of 0.25 radians
 - underlying event: gaussian with 3.5 GeV sigma

$m_{_{W}}$ fit distributions

- Apply selection cuts
 - e,v p_{$_{_{T}}$} 30-55 GeV, m_{$_{_{T}}$} 60-100 GeV, u<15, $|\eta_{_{e}}|<1$

$m_{_{W}}$ fit distributions

Data distributions broadly reproduced

Likelihood fit

- Fit for $m_{_{W}}$ by producing templates using CT10 PDF and reweighting Breit-Wigner distribution
 - 4 MeV statistical uncertainty in a given fit
 - >95% correlation between fits

m_w uncertainties

- CT10 uncertainty dominated by one eigenvector
- MSTW uncertainties relatively small

Central values of different PDF sets agree to better than 1 MeV

m_w uncertainties

Symmetric eigenvector uncertainty: $\frac{1}{2}$ the difference between + and – eigenvectors If both eigenvectors shift the mass in the same direction take $\frac{1}{2}$ the larger deviation

PDF set	m _⊤ fit	e E _T fit	νp _T fit
CT10	16.5	15.8	18.2
MSTW90	12.4	12.0	14.0
MSTW68	6.6	6.4	7.1
NN 0.118	6.2	6.1	7.1
NN 0.120	5.8	5.8	6.5

Uncertainty changes by 0.8 MeV if use average of 35 evaluations with samples of 1 million events each

CT10 x (MSTW68 / MSTW90): 8.8 MeV

CT10 x (1 / 1.6): 10.3 MeV

c.f. CDF uncertainty: 11 MeV (MSTW2008 68%)

c.f. PRD 83, 113008: 3 MeV (MSTW2008)

Forward / central cross section

- PDF uncertainty on m_w due to η_l restriction
- Potentially reduce by measuring relative cross section for forward to central leptons

Such a measurement was performed by CDF with up to

220 pb⁻¹ of data

Forward / central cross section

CT10 error eigenvectors on Forward/Central region ratio

MSTW 90% error eigenvectors on Forward/Central region ratio

 $\sigma(1<|\eta_1|<2) / \sigma(|\eta_1|<1)$

PDF set	Fractional uncertainty
CT10	4.0%
MSTW90	2.9%
MSTW68	1.6%

30

35

Conclusions

- Found PDF uncertainties larger than other studies but smaller than experiments
 - Underestimate due to reweighting?
 - Inflation due to limited statistics?
- Some interesting features:
 - MSTW 68% / MSTW 90% is 1.9⁻¹
 - CT10 uncertainty dominated by one eigenvector
 - NNPDF gives smallest uncertainty
- Possible reduction in uncertainties from measurement of forward / central cross section ratio
 - $_{-}$ 1% precision = 4 MeV on $m_{_{W}}$